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Demand Response (DR) programs have been implemented in many competitive electricity markets to
prevent price spikes and power systems unreliability. Mathematical modeling of these programs helps
regulators to evaluate the impact of price responsive loads on market conditions. In this paper, several
nonlinear economic models of price responsive loads are derived based on price elasticity of demand
and customer benefit function. The main objectives of the paper include extracting different mathemat-
ical models for Time of Use (TOU) programs, and comparing these models to find out which model shows
more conservative and which one shows non-conservative results compared with the initial load curve.
This could be used by ISOs or DR programs developers as a guideline to use conservative models to have
lower error in load profile characteristics estimation, such as variation in peak load or amount of energy
consumptions. In order to evaluate the performance of the proposed nonlinear DR models, numerical
studies are conducted on the load curve of different markets. Results obtained by using different models
are presented and compared considering different scenarios for price, elasticity and potentiality of DR
programs implementation. Characteristics of both linear and nonlinear economic models of price respon-
sive loads have been evaluated.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Over the last two decades, electricity markets have been
involved in restructuring aimed at promoting competition among
market participants. One typical market design often requires elec-
tricity to be sold in a spot wholesale market where potential buy-
ers (retailers or end consumers) and sellers (producers) submit
their bids for each time period. The demand and the supply sides
meet in the electricity power exchanges. The resulting auction
yields the equilibrium prices, which vary over time and space,
considering network constraints and supply/demand balance.
However, a common feature of the electricity wholesale markets
is lack of price responsiveness measured by the value of demand
elasticity [1]. This is due not only to the peculiar characteristics
of the commodity, such as non-storability, lack of good substitutes,
and the relatively small impact of electricity bill on the typical con-
sumer’s budget, but also to the relation between wholesale and
retail markets. Since end users simply do not see the ‘‘true’’ spot
prices, they cannot use these prices when making decisions regard-
ing power withdrawal; this ‘‘inelastic’’ behavior is transmitted to
retailers, who have legal obligations to serve their customers and
therefore to the wholesale demand. Furthermore, the overwhelm-
ing lack of interest from consumers in seeing the real price of elec-
tricity makes it politically difficult to implement demand elasticity
improvement measures [2].

In these circumstances, Demand Response (DR) programs are
such useful tools for the independent system operator (ISO) that
can be implemented at times of critical system conditions to pro-
vide the much needed system demand reduction and an operating
reserve that can be activated within a relatively short time. The
idea is to make it attractive for customers to use less power during
periods of peak load [3]. In a DR program, the customer signs a con-
tract with the retailer, local utility or the ISO to reduce its demand
as and when requested. The utility benefits from reduction of its
peak load and thereby saving costly generation reserves, restoring
quality of service and ensuring reliability [4,5]. The customer ben-
efits from reduction in its various energy levels, costs and particu-
larly from incentives provided by the local utility or the ISO.
Utilities typically commit their expected energy requirements with
a mix of bilateral forward contracts with generators and purchases
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Nomenclature

i For i hour
j For j hour
B0 (i) Customer’s benefit when the demand is equal to The

nominal value d0(i) ($)
B(d(i)) Customer’s benefit in i-th hour ($)
d0 Initial demand value (kW)
d0(i) Initial demand value in i-th hour (kW h)
d Customer demand (kW)
d(i) Customer demand in i-th hour (kW h)

E Price elasticity of demand
E(i,i) Self-elasticity
E(i,j) Cross-elasticity
q0 Initial electricity price ($/kW)
q0(i) Initial electricity price in i-th hour ($/kW h)
q Spot electricity price ($/kW)
q(i) Spot electricity price in i-th hour ($/kW h)
S Customer’s profit ($)
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in day-ahead and real-time markets. The extent of customer sav-
ings from price reductions thus depends on how much energy is
purchased in spot markets [6].

The programs are usually structured into one of two categories:
Incentive-Based Programs (IBP) and Time-Based rate Programs
(TBR). Each of these categories is composed of several programs
as indicated in Fig. 1. In time-based rate programs (Time of Use
(TOU), Real Time Pricing (RTP), Critical Peak Pricing (CPP)) the elec-
tricity price changes for different periods. Incentive-based pro-
grams include Direct Load Control (DLC), Emergency Demand
Response Program (EDRP), Interruptible/Curtailable service (I/C),
Capacity market Program (CAP), Demand Bidding (DB) and
Ancillary Service (A/S) programs. More detailed explanations of
DR programs can be found in [7–10]. In this paper, we have focused
on TOU program which is briefly introduced in the following.

In TOU program, the electricity price changes over different
periods according to the electricity supply cost. For example, high
price for peak period, medium price for off-peak and low-price for
low load period, and there isn’t any incentive or penalty for this
program. Definition of TOU periods differs widely among utilities
based on the timing of their peak system demands over the day,
week, or year [3]. In order to evaluate the impact of DR programs
on the network and market characteristics such as load profile,
transmission congestion and reserve margin , developing price
responsive demand models is necessary. Obviously, there are many
possible structural forms for customer response. Linear economic
models of price responsive loads for DR programs have been devel-
oped in [1,11–16]. Since the optimization problem of the customer
profit is nonlinear, it is necessary to develop nonlinear economic
models of price responsive loads for more realistic characterization
of the demand. Maximization of the utility benefit function prob-
lem by using different nonlinear benefit-demand functions has
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Fig. 1. Categories of demand response programs.
been discussed in [17,18]. In [19], a retailer profit is maximized
through using a nonlinear load model with power structure.

In this paper, three nonlinear structures namely; power, expo-
nential and logarithmic economic models of price responsive loads
for DR programs are extracted by using the concept of ‘‘price elas-
ticity of demand’’, and ‘‘customer benefit function’’. These models
are compared with linear ones to determine the accuracy and con-
sistency with operational strategies. The proposed models can be
used to analyze the impact of DR programs on load profile
characteristics.

The main contribution of this paper includes extracting differ-
ent mathematical models for TOU programs, and comparing these
models to find out which model shows more conservative and
which one shows non-conservative results compared with the ini-
tial load curve. This could be used by ISOs or DR programs develop-
ers as a guideline to use conservative models to have lower error in
load profile characteristics estimation, such as variation in peak
load or the amount of energy consumptions. Therefore, they would
have a better and more realistic insight in power systems and mar-
ket operation and in performing related tasks, such as reserve pro-
curement. Furthermore, as another contribution, a procedure is
introduced for the selection of the more reliable load economic
model for analyzing the impact of implementation of DR programs
on power system characteristics. It should be noted that linear
model of demand response programs have been discussed in pre-
vious works of the authors Refs. [11–13] but, in this study various
nonlinear models are developed. Furthermore, in this manuscript
the results of the developed nonlinear models have been compared
with linear model of previous works.

The remainder of the paper is organized as follows: In Section
‘Nonlinear modeling of DR programs’, nonlinear models of DR pro-
grams are derived. Section ‘Numerical studies’ is devoted for
numerical studies considering different scenarios for price, elastic-
ity and program potentiality for evaluation of proposed nonlinear
models of DR programs. Furthermore, sensitivity analysis of mod-
els to change price, elasticity and program potentiality has been
done by standard deviation. Finally, Section ‘Conclusions’ con-
cludes the paper.

Nonlinear modeling of DR programs

In order to model the customer response, we consider customer
demand for electricity d(i) and assume that it depends on price or
tariff that consumer must pay for electricity, q(i). Obviously, there
are many possible structural forms for customer response. In this
paper three such structures namely; power, exponential and loga-
rithmic nonlinear models for customer response are derived. It is
important to note that a second-order Taylor Series expansion of
the power, exponential and logarithmic benefit functions B(d(i))
about d(i) = d0(i) yields the quadratic income function, and a
first-order Taylor Series expansion of the response function d(i)
resulting from the power, exponential and logarithmic functions
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yields the linear response functions obtained from the quadratic
income function. Hence, if d(i) ffi d0(i), all three structures are
equivalent. However, in actual applications, the assumption
d(i) ffi d0(i), may not be valid, in which case a choice of explicit
structures is required but, the best model is not known [20].

In the following, the above mentioned three nonlinear struc-
tures for customer response are derived for single period, multiple
period and composite period loads which include both single and
multiple period loads.

Power modeling

Modeling single period elastic loads
Elasticity is defined as the demand sensitivity with respect to

the price [21]:

Eði; jÞ ¼ @dðiÞ
@qðjÞ :

q0ðjÞ
d0ðiÞ

j ¼ 1;2;3; . . . ;24 ð1Þ

Eði; jÞ � 0 if i ¼ j

Eði; jÞ � 0 if i–j

�
ð2Þ

The elasticity coefficient in (1) indicates the relative change in
demand for the i-th hour that would be resulted from a change
in the electricity price in the j-th hour. The demand of the i-th hour
decreases as the price of this hour increases and it will increase as
the price of the j-th hour increases. The term q0(j)/d0(i) in (1) is
used for normalization. If the electric energy prices vary for differ-
ent periods, then the demand reacts one of the followings:

– Some of loads are not able to move from one period to another
(e.g. illuminating loads) and they could be only ‘‘on’’ or ‘‘off’’. So,
such loads have a sensitivity just in a single period and it is
called ‘‘self elasticity’’, and always has a negative value, E(i,i).

– Some consumption could be transferred from the peak period to
the off-peak or low periods. Such behavior is called multi period
sensitivity and is evaluated by ‘‘cross elasticity’’. This value is
always positive, E(i,j).

– Some large loads (e.g. industrial loads/regional electricity net-
works and electricity markets) may include both single and
multi-period loads which are referred to here as composite per-
iod loads.

Let B(d(i)) be the benefit of customer during i-th hour obtained
due to consumption of d(i) kWh of electric energy. Then, the cus-
tomer’s profit, S, for the same period will be as follows:

S ¼ BðdðiÞÞ � dðiÞ � q ð3Þ

According to the classical optimization rules, the maximum
profit of the customer can be calculated as:

@S
@dðiÞ ¼

@BðdðiÞÞ
@dðiÞ � qðiÞ ¼ 0 ð4Þ

@BðdðiÞÞ
@dðiÞ ¼ qðiÞ ð5Þ

For power structure of customer response function, the benefit
function can be obtained by Taylor expansion of B(d(i)) as follow-
ing [18]:

BðiÞ ffi B0ðiÞ þ
q0ðiÞdðiÞ

1þ Eði; iÞ�1

dðiÞ
d0ðiÞ

� �Eði;iÞ�1

� 1

( )
ð6Þ

where the self elasticity, E(i,i), is defined as the variation of load in
the i-th period due to the electricity price change in the same per-
iod. The function is concave and non-decreasing and is not defined
for a zero load value or for elasticity equal to �1; also negative
values for the benefit may be obtained. The marginal benefit in
power model is greater than this value in the linear case and the
benefit is reduced for low values of the elasticity. By differentiating
the above equation with respect to d(i),we will have:

@BðdðiÞÞ
@dðiÞ ¼

q0ðiÞ
1þ Eði; iÞ�1

dðiÞ
d0ðiÞ

� �Eði;iÞ�1

� 1

( )

þ q0ðiÞ:dðiÞ
1þ Eði; iÞ�1 Eði; iÞ�1 � 1

d0ðiÞ
dðiÞ
d0ðiÞ

� �Eði;iÞ�1�1
( )

ð7Þ

Substituting (5) in (7) results in:

ð1þ Eði; iÞ�1Þ � qðiÞ
q0ðiÞ

¼ dðiÞ
d0ðiÞ

� �Eði;iÞ�1

� 1þ Eði; iÞ�1
:

dðiÞ
d0ðiÞ

� �Eði;iÞ�1

ð8Þ

qðiÞ
q0ðiÞ

¼ dðiÞ
d0ðiÞ

� �Eði;iÞ�1

� 1

1þ Eði; iÞ�1

 !
ð9Þ

For small values of elasticity, the second term of the above
equation can be ignored. It should be notified that in real situations
the elasticity is in the range of �0.1, �0.2. Therefore, customer’s
demand can be represented as following:

dðiÞ ¼ d0ðiÞ �
qðiÞ
q0ðiÞ

� �Eði;iÞ

ð10Þ

The above equation represents single period elastic load model.
Modeling multi period elastic loads
To model multi period elastic load first, the concept of cross

elasticity should be addressed. The cross elasticity is defined as
the variation of load in the i-th period due to the electricity price
change in the j-th period, as represented by (1) and (2). For j – i,
the same process having been implemented as the single period
model (Eqs. (3)–(10)), following equation can be obtained.

dðiÞ ¼ d0ðiÞ �
qðjÞ
q0ðjÞ

� �Eði;jÞ

ð11Þ

Now, by assumption of i = constant, j – i and j = 1, 2, 3,. . ., 24,
the multi period elastic load model for power structure of cus-
tomer response function can be obtained as follows:

dðiÞ ¼ d0ðiÞ �
Y24

j¼1
j–i

qðjÞ
q0ðjÞ

� �Eði;jÞ

ð12Þ

It should be noted that a 24-h interval has been considered in
(12). However, longer or shorter intervals are also definable.
Modeling composite period elastic loads
As it was noted earlier, certain demands may include both sin-

gle and multi-period loads which are referred to here as composite
period loads. For power structure of customer response function,
for i = constant, and j = 1, 2, 3,. . ., 24 (including i), the composite
period load model can be obtained by combining (10) and (12)
as follows:

dðiÞ ¼ d0ðiÞ �
Y24

j¼1

qðjÞ
q0ðjÞ

� �Eði;jÞ

ð13Þ

Eq. (13) shows how much the customer’s consumption should be to
achieve maximum benefit in a 24-h interval while participating in
TBR programs. For the power structure, E(i,i) is constant for all
q(i) and d(i). Hence, the power structure is often called the ‘‘con-
stant elasticity’’ model.



Fig. 2. Demand response functions for different elasticities.
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Exponential modeling

Modeling single period elastic loads
For exponential structure of customer response function, the

benefit function can be obtained by Taylor expansion of B(d(i)) as
following [15]:

BðiÞ ffi B0ðiÞ þ q0ðiÞdðiÞ � 1þ 1
Eði; iÞ ln

dðiÞ
d0ðiÞ

� �
� 1

� �� �
ð14Þ

It should be noted that the function is not defined for zero loads
as well as zero elasticity. Differentiating the above equation yields:

@BðdðiÞÞ
@dðiÞ ¼ q0ðiÞ 1þ 1

Eði; iÞ ln
dðiÞ
d0ðiÞ

� �� �
� 1

� �
þ q0ðiÞ

� dðiÞ 1
Eði; iÞ �

1
d0ðiÞ

� d0ðiÞ
dðiÞ

� �
ð15Þ

Substituting (5) in (15) results in:

qðiÞ ¼ q0ðiÞ þ
q0ðiÞ
Eði; iÞ ln

dðiÞ
d0ðiÞ

� �
� 1

� �
þ q0ðiÞ

Eði; iÞ ð16Þ

qðiÞ � q0ðiÞ ¼
q0ðiÞ
Eði; iÞ ln

dðiÞ
d0ðiÞ

� �
� 1þ 1

� �
ð17Þ

Therefore, customer’s demand can be represented as follows:

dðiÞ ¼ d0ðiÞ � EXP Eði; iÞqðiÞ � q0ðiÞ
q0ðiÞ

� �
ð18Þ

The above equation represents single period elastic load model.

Modeling multi period elastic loads
Using the cross elasticity definition (1) and (2), by assuming

i = constant, j – i and j = 1, 2, 3,. . ., 24, similar Section ‘Power model-
ing’), we see the multi period elastic load model for exponential
structure of customer response function can be obtained as follows:

dðiÞ ¼ d0ðiÞ � EXP
X24

j¼1
j–i

Eði; jÞqðjÞ � q0ðjÞ
q0ðjÞ

8>><
>>:

9>>=
>>; ð19Þ

Modeling composite period elastic loads
For exponential structure of customer response function, for

i = constant, and j = 1, 2, 3,. . ., 24 (including i), the composite period
load model can be obtained by combining (18) and (19) as follows:

dðiÞ ¼ d0ðiÞ � EXP
X24

j¼1

Eði; jÞqðjÞ � q0ðjÞ
q0ðjÞ

( )
ð20Þ

Logarithmic modeling

Modeling single period elastic loads
For logarithmic structure of customer response function, the

benefit function can be obtained by Taylor expansion of B(d(i)) as
following [15]:

BðiÞ ffi B0ðiÞ þ q0ðiÞd0ðiÞEði; iÞ � EXP
dðiÞ � d0ðiÞ
Eði; iÞ � d0ðiÞ

� �
� 1

� �� �
ð21Þ

Differentiating the above equation yields:

@BðdðiÞÞ
@dðiÞ ¼ q0ðiÞd0ðiÞEði; iÞ �

1
Eði; iÞ � d0ðiÞ

� �

� EXP
dðiÞ � d0ðiÞ
Eði; iÞ � d0ðiÞ

� �
ð22Þ

Substituting (5) in (22) results in:

qðiÞ ¼ q0ðiÞ � EXP
dðiÞ � d0ðiÞ
Eði; iÞ � d0ðiÞ

� �
ð23Þ

dðiÞ � d0ðiÞ
Eði; iÞ � d0ðiÞ

¼ ln
qðiÞ
q0ðiÞ

� �
ð24Þ
Therefore, customer’s demand can be represented as following:

dðiÞ ¼ d0ðiÞ � 1þ Eði; iÞ � ln qðiÞ
q0ðiÞ

� �� �
ð25Þ

The above equation represents single period elastic load model.

Modeling multi period elastic loads
Using the cross elasticity definition of (1) and (2), by assuming

i = constant, j – i and j = 1, 2, 3,. . ., 24, similar Section ‘Power mod-
eling’, we see the multi period elastic load model for logarithmic
structure of customer response function can be obtained as
follows:

dðiÞ ¼ d0ðiÞ � 1þ
X24

j¼1
j–i

Eði; jÞ ln qðjÞ
q0ðjÞ

� �8>><
>>:

9>>=
>>; ð26Þ
Modeling composite period elastic loads
For logarithmic structure of customer response function, for

i = constant, and j = 1, 2, 3,. . ., 24 (including i), the composite period
load model can be obtained by combining (25) and (26) as follows:

dðiÞ ¼ d0ðiÞ � 1þ
X24

j¼1

Eði; jÞ ln qðjÞ
q0ðjÞ

� �( )
ð27Þ

Figs. 2 and 3, illustrate the behaviors of nonlinear models of
demand response versus linear one for different values of elasticity
and different ratios of spot electricity price to initial price (q/q0),
respectively. As seen in Fig. 2, the higher the elasticity, the more
divergence there is between the responses of the models. This fig-
ure shows that for small elasticity, where the demand does not
change too much from its initial value, all model structures behave
almost the same. Furthermore, it can be seen that the response of
linear model for high elasticity values does not match with actual
situation.

From Fig. 3, it can be observed how different demand response
functions have similar performance for the range of lower ratios of
spot electricity price to initial price, where they can be approxi-
mated by a linear demand function. However, there are consider-
able differences between various models for higher price ratios.
This result recommends that in case of price spikes, nonlinear
model with power structure is the most conservative one.

Numerical studies

In this case study, TOU program, as one of the TBR programs, is
used for evaluation of the proposed nonlinear price responsive load
models. In this regard, different patterns of load profiles of



Fig. 3. Demand response functions for different ratios of spot electricity price to
initial price (E(i,i) = �0.2).

Table 1
Self and cross elasticity values.

Peak Off-peak Valley

Peak �0.20 0.016 0.012
Off-peak 0.008 �0.20 0.01
Valley 0.006 0.008 �0.20
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different real world and test networks such as the Iranian Power
Grid in 2008 [22], a province of China [23], the IEEE-RTS test sys-
tem [24] and, PJM market [25] are used for our numerical studies.
Initial load curves are presented in Fig. 4. In a three -tariff system,
these curves are divided into three different periods: valley, off-
peak load and peak load. The average price of electricity has been
considered 0.04, 0.016 and 0.004 $/kW h, in peak, off-peak and val-
ley periods, respectively [22]. The price elasticity of the demand
are considered as listed in Table 1, which is originally taken from
[26]. Although different customers (residential, commercial and
Industrial) have various amounts of demand-price elasticity, and
it is possible to extract more complicated models considering dif-
ferent elasticity values, there will not be significant changes in
the results. Definitely, the results will be more accurate, but there
is not any change in a conservative modeling.

Several scenarios have been considered as indicated in Table 2.
These scenarios are designed based on the changes of elasticity,
electricity price and potential of TOU program. Here, the potential-
ity of program means the expected capacity of customer participa-
tion in the program. The results of the simulation studies and the
impact of the proposed nonlinear models as well as the linear
model of price responsive loads on load curve characteristics are
discussed for different scenarios as follows.

Scenario 1 In this scenario, TOU pricing is 0.04, 0.016 and
0.004 $/kW h, in peak, off-peak and valley periods, respectively.
According to the investigations of mentioned networks, it is
assumed that the potential of implementation of TOU program is
Fig. 4. Different networks initial load curves. ⁄IEEE-RTS multiplied by
15%. This scenario is considered as the base case for comparison
with other scenarios. By applying composite models of linear,
power, exponential and logarithm structures on the initial load
curves, the results of all models are almost similar which can be
seen in Fig. 5. As it was expected, since the elasticities and price
ratios are low, different models have very similar performance
and they can be approximated reasonably by the linear model.
More precise analysis of the results of the above figure shows a
maximum 2% difference between the linear and power model dur-
ing peak period. For certain power system problems such as
assigning reasonable reserve margin for reliable operation of the
system, the above error may be considerable. As it is shown in
Fig. 5, for Iranian peak day of 2008, the amount of peak in initial
load at 22:00 is 39,696 MW. When TOU program is implemented
using different linear and nonlinear models, the resulted peak
value will be 34,906 MW, 35,465 MW, 35,246 MW, and
35,215 MW for linear, Power, exponential, and logarithmic models,
respectively. It can be seen that the linear model shows the most
difference and the power model shows the least difference with
the initial peak load. Therefore, more conservative model i.e. power
structure should be selected. The behavior of different models
regarding the energy consumption criterion can be obtained from
Fig. 5.

Scenario 2 The impact of increasing elasticity on the models
behavior has been evaluated in this scenario. Fig. 6 shows the
response of different models to TOU program when the elasticities
are doubled in comparison with scenario 1. As it is shown in Fig. 6,
for Iranian peak day of 2008, the amount of peak in initial load at
22:00 is 39,696 MW. When TOU program is implemented using dif-
ferent linear and nonlinear models, the resulted peak value will be
32,843 MW, 34,369 MW, 34,059 MW, and 33,461 MW for linear,
Power, exponential, and logarithmic models, respectively. It can be
seen that the linear model shows the most difference and the power
model shows the least difference with the initial peak load. In addi-
tion, the resulted load curves are more dispersed than those of sce-
nario 1. There exists a maximum 6% difference on the peak point of
the load curves. This is in consistence with the results of Fig. 2.
0.05 and Iran 2008 multiplied by 0.0032 for more clarification.



Table 2
Definition of scenarios.

Scenario
no

Program Model Elasticity Electricity price Potential (%)

1 TOU (base case) Linear As Table 1 0.04, 0.016 and 0.004 $/kW h, in peak, off-peak and valley
periods

15
Power
Exponential
Logarithm

2 TOU (double
elasticity)

Linear Double values of
scenario 1

As scenario 1 As scenario 1
Power
Exponential
Logarithm

3 TOU (double price) Linear As scenario 1 0.08, 0.016 and 0.002 $/kW h, in peak, off-peak and valley
periods

As scenario 1
Power
Exponential
Logarithm

4 TOU (double
potential)

Linear As scenario 1 As scenario 1 Double value of
scenario 1Power

Exponential
Logarithm

Fig. 5. Different models for TOU program of scenario 1 (base case).
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Scenario 3 In order to investigate the effect of the change of
electricity prices on the behavior of different models, the prices
are doubled in comparison with scenario 1. The results of this case
are presented in Fig. 7. It can be seen that the obtained load profiles
for different models obey the results of Fig. 5. In other words, for
higher electricity prices the nonlinear behavior of the demand
response is dominant. In addition, the resulted load curves are
more dispersed than other scenarios.

Scenario 4 In this scenario the potential of implementation of
TOU program is raised to 30%. In scenario 4, and other scenarios,
the program potential is assumed to be as a percentage of d0(i) that
acts in the models and the obtained result is added to the remain-
ing part of d0(i).The results of this scenario are depicted in Fig. 8.
Dispersion of load curves can be observed in peak period in com-
parison with scenario 1. A 4% difference between linear and power
model can be seen on peak points of the resulted load profiles. The
impacts of different models of TOU program on different power
systems peak and total energy consumption for different scenarios
are illustrated in Figs. 5–8. In scenarios 2, 3 and 4, all of the models
show more reduction in peak load and energy consumption, when
the price/elasticity/program potential increases, compared with
scenario 1.

Furthermore, from Figs. 5–8 it can be seen that in both high and
low load conditions the power model is the most conservative
model in all scenarios while the linear model is the most non con-
servative one. These results show that the performance of other
structures i.e. exponential and log, are located between the perfor-
mances of the above mentioned models. The above results show
that if the ISO plans to implement TOU program based on the linear
model, the operational targets may not be achieved and the power



Fig. 6. Different models for TOU program of scenario 2 (double elasticity).

Fig. 7. Different models for TOU program of scenario 3 (double price).
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systems reliability may be jeopardized. Obviously, to achieve a
high reserve security margin through peak reduction conservative
nonlinear models are recommended. Another considerable point
that can be seen in Figs. 5–8 is that the higher values of elasticity,
price and program potential will lead to the higher divergence
between models. Table 3 shows the standard deviation (SD) of dif-
ferent models in each scenario which is calculated using (28).

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðx� �xÞ2

ðn� 1Þ

s
ð28Þ



Fig. 8. Different models for TOU program of scenario 4 (double potential).

Table 3
Standard deviation of different models.

Network Scenario no Scenario description Standard deviation

Peak at peak period* (MW) Total energy consumption (MWh)

IRAN 2008 1 Base case 230 1814
2 Double elasticity 674 6783
3 Double price 1130 5468
4 Double potential 460 3628

The province of CHINA 1 Base case 0.4 4.1
2 Double elasticity 1.4 15
3 Double price 2.2 10.3
4 Double potential 0.9 8.2

IEEE-RTS 1 Base case 16.5 317
2 Double elasticity 48.3 1007
3 Double price 81 1173
4 Double potential 23 398

PJM market 1 Base case 0.6 11
2 Double elasticity 1.9 37
3 Double price 2.8 36.7
4 Double potential 1.2 22.7

* The peak time at peak period for Iran 2008 was happened at 22:00, as well as, the province of China at 20:00, IEEE-RTS at 11:00 and PJM market at 20:00 h.
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where x is the sample, �x is the mean average and n is the number of
samples. Standard deviation for peak at peak period has been calcu-
lated from numerical values of peak for four models for each net-
work as well as total energy consumption. For example at 22:00
PM (the Iran 2008 peak) the value of peak has been obtained by
each DR model. Standard deviation has been calculated from these
four values. It can be seen that high standard deviations are
obtained for scenarios 2, 3, 4 and the least one is for scenario 1.

In other words when amounts of energy prices, elasticity and
potential of the programs are intermediate, the performances of
the models are almost similar i.e. less standard deviation. However,
when each of the values of electricity price, elasticity and programs
potential increases, the results of the models will be significantly
different (high SD). For example, Table 3 shows that when the elec-
tricity price is doubled, the standard deviation has become about 5
and 3 times more for peak and energy consumption criteria,
respectively. According to the above discussions, the degree of reli-
ance of different model structures (more conservative model) can
be represented as Fig. 9. Fig. 9 can be used by the ISO as a guideline
for selection of relevant models for different system operation
strategies i.e. the peak or energy consumption reduction. The
above numerical results confirm that the power model has the
greatest degree of reliance in comparison with other models and
at the opposite side; the linear model has the lowest degree of reli-
ance. Therefore, it can be concluded that applying the power model
for investigating the impact of TBR DR Programs on the network



Fig. 9. Degree of reliance of different model structures for all four networks.
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operational features could lead to more realistic results. If ISO can
obtain the demand response function of the grid such as linear,
power, exponential or log, he/she should simulate DR programs
with relative model but, if the behavior of the demand is unknown
for the ISO, he/she can conduct analysis of the system operation by
using the results of Fig. 9. In other words, the higher the degree of
reliance, the better the performance of DR models.

Conclusions

Development of nonlinear models for time-based demand
response programs has been addressed in this paper. These nonlin-
ear models which are based on the concept of the price elasticity of
the demand have different functions including power, exponential
and logarithmic structures. The developed models can be used by
ISOs or DR programs developers as a guideline to use conservative
models to have lower estimation error in load profile characteris-
tics, such as variation in peak load or the amount of energy con-
sumptions. Therefore, they will have a better and more realistic
insight in power systems and market operation as well as perform-
ing related tasks, such as reserve procurement. Furthermore, a pro-
cedure was introduced for the selection of more reliable load
economic model for analyzing the impact of implementation of
DR programs on power system characteristics.

The behavior of the proposed nonlinear models versus previ-
ously developed linear model have been investigated against
increasing the elasticity, electricity price and the program potential
in different power systems load curves. It has been shown that for
small elasticity values as well as small price deviations both the
linear and nonlinear models have almost similar behavior. The
results of sensitivity analysis clarified that as the elasticity and/or
electricity price increase, the differences between the behaviors
of the models become more. It was illustrated that the nonlinear
model with power structure has the most conservative behavior
with high degree of reliance suitable for system operational appli-
cations. The developed models have been applied to the load pro-
file curves of actual systems with justifiable results. These models
can be used by the ISO to solve certain market issues such as pro-
viding required reserve margins on the presence of DR programs.
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